INTERNATIONAL JOURNAL OF

SOLIDS and
STRUCTURES

www.elsevier.com/locate/ijsolstr

International Journal of Solids and Structures 41 (2004) 2065-2083

The polarization vector and secular equation for surface
waves in an anisotropic elastic half-space

T.C.T. Ting *!

Division of Mechanics and Computation, Stanford University, Durand Bldg 262, Stanford, CA 94305-4040, USA
Received 25 June 2002; received in revised form 20 August 2003

This paper is dedicated to Professor Bruno Boley

Abstract

The displacement at the free surface of an anisotropic elastic half-space x, > 0 generated by a surface wave prop-
agating in the direction of the x;-axis traces an elliptic path. It is represented by the polarization vector az = e; + ie,,
where e;, e, are the conjugate radii of the ellipse on the polarization plane. The displacement traces the ellipse in the
direction from e, to e;. We present explicit expressions of e;, e, and the secular equation without computing the Stroh
eigenvalues p and the associated eigenvectors a and b. After presenting the expressions for a general anisotropic elastic
material, the special cases are studied separately. For monoclinic materials with the symmetry plane at x; = 0, the
secular equation and the conjugate radii e;, e, are identical to that for orthotropic materials when s}, = 0 but s}, need
not vanish. For monoclinic materials with the symmetry plane at x; = 0, e, is along the x,-axis while e, is on the plane
x; = 0. If the symmetry plane is at x, = 0, e, is on the plane x, = 0 while e, is along the negative x,-axis. In both cases,
e;, e, are the principal radii of the ellipse. We also present the derivative of a; with respect to x,, the depth from the free
surface, that provides information on (i) whether the conjugate radii of the ellipse increase as x, increases and (ii)
whether the polarization plane rotates as x, increases. New secular equations are obtained for monoclinic materials with
the symmetry plane at x; =0 or x, = 0.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

A surface wave propagating in the direction of the x;-axis in an anisotropic elastic half-space x, > 0 in
general consists of two or three inhomogeneous partial waves. The displacement u is expressed in terms of
the Stroh eigenvalues p, and the associated eigenvectors a, (¢ = 1,2, 3). The stress is expressed in terms of
another eigenvectors b, (o« = 1,2, 3). The vanishing of the surface traction at the free surface is achieved by
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finding a proper linear superposition of b,. The same linear superposition of a, provides the polarization
vector ap at the free surface. With this approach, an explicit expression of a; can be obtained only for
special anisotropic materials.

We present a set of equations that govern the polarization vector ag. The equations were originally
derived by Taziev (1989) but he was interested mainly in obtaining an explicit expression for secular
equation. He did have the expression for the polarization vector but it was not explicit. What prevented him
from obtaining an explicit expression for a; was that explicit expressions of the matrices Ny, N,, N3 were
not available in his time. He tried to employ the result for a general anisotropic elastic material to special
materials. Examples in the literature show that this is very often not the best way to study surface waves for
special materials.

The Stroh (1958, 1962) formalism is introduced briefly in Section 2 which is employed in Section 3 to
derive the secular equation obtained by Taziev (1989). An explicit expression of the polarization vector ag
for a general anisotropic elastic material is presented in Section 4. Also presented is the derivative of a; with
respect to x,. The secular equation and the polarization vector and its derivative for special materials are
best studied separately instead of specializing the general result. Thus the special cases of orthotropic and
monoclinic materials with the symmetry plane at x3 = 0, x; = 0 or x, = 0 are discussed separately in Sec-
tions 5-8. New secular equations are obtained for monoclinic materials with the symmetry plane at x; =0
or x; = 0. It is shown in Section 9 that the derivation presented here applies to two- and one-component
surface waves as well so that the results are valid for both subsonic and supersonic surface waves.

2. The Stroh formalism

In a fixed rectangular coordinate system x; (i = 1,2, 3) let u; and o;; be the displacement and stress in an
anisotropic elastic material. The stress—strain law and the equation of motion are

O-i/ = ijksuk.sa (21)
Cijksuk,sj = puh (22)

in which repeated indices imply summation, p is the mass density, the comma denotes differentiation with
x;, the dot stands for differentiation with time ¢, and Cyy, is the elastic stiffness that is assumed to possess the
full symmetry. Consider an inhomogeneous plane wave with the steady wave speed v propagating in the
direction of the x;-axis. A solution for the displacement vector u of Eq. (2.2) can be written as (Stroh, 1962)

u=ac“, z=x —vt+px, (2.3)

in which £ is the real wave number, and p and a satisfy the eigenrelation

Ia=0, (2.4)
I'=Q—XI+p(R+R") +pT, (2.5)
X =pv’. (2.6)

In the above the superscript T stands for the transpose, I is the unit matrix, and Q, R, T are 3 x 3 matrices
whose elements are

Oic = G, R = Cia,  Tie = Cgo- (2.7a)



T.C.T. Ting | International Journal of Solids and Structures 41 (2004) 2065-2083 2067

In the contracted notation C,; they are

Cn Cis Cis Cis Cnn Cuy Cos Cor Caa
Q=|Ca Ce Ces|, R=|Cs Coo Ca|, T=|Cx Cn Cul. (2.7b)
Csi Csq Css Css Csa Csq Css Crn Cy
The matrices Q and T are symmetric and positive definite. Introducing the new vector b defined by
b=R"+pT)a=—[p'(Q—XI) +R]a (2.8)
in which the second equality follows from (2.4), the stress determined from (2.1) can be written as
01 = —¢i,2 — poity,  Op = ;. (2.9)
The ¢; (i = 1,2,3) are the components of the stress function vector
¢ = be'*. (2.10)
There are six eigenvalues p, and six Stroh eigenvectors a, and b, (. = 1,2,...,6). When p, are complex

they consist of three pairs of complex conjugates. If p;, p, p; are the eigenvalues with a positive imaginary
part, the remaining three eigenvalues are the complex conjugates of p;, p,, p;. Assuming that p;, p,, p; are
distinct, the general solution obtained from superposing three solutions of (2.3) and (2.10) associated with
P1, D2, p3 can be written in matrix notation as

u=A(")q, ¢=B(")q, (2.11)
where q is an arbitrary constant vector and

A= [a17 a, 33]) B= [bla b27 b3]a (2122\.)

<eikz*> — diag[eikzl , eikzz7 eik23], (2 12b)

Z, = X] — 0f + p,X;. (2.12¢)

For surface waves in the half-space x, > 0, (2.11); assures us that u — 0 as x, — oo. The surface traction at
x; = 0 vanishes if $ =0 at x, =0, i.e.,

Bq = 0. (2.13)
Thus when v is the surface wave speed the determinant of B must vanish,
IB| = 0. (2.14)

This is the secular equation for X.
The two equations in (2.8) can be written in a standard eigenrelation as (Ingebrigtsen and Tonning, 1969;
Barnett and Lothe, 1973; Chadwick and Smith, 1977)

N¢& =p¢, (2.15)
o N1 N2 | a

N= [N3+XI NIT}’ &= [b]’ (2.16)

N, =-T'R", N,=T"! N;=RT'RT-0Q. (2.17)

The matrix N, is symmetric and positive definite while N3 is symmetric and positive semi-definite. It is
shown in Ting (1988) that N;, N, N3 have the structures

¥e 1 Se Nge Ny Nyg n 0 —x
“Ni=|rn 0 s, No=|nmg nn na|, -Ny=[0 0 0 |. (2.18)
rs 0 sy Nag  Mas  Nas -k 0 pu
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An explicit expression of the elements of Ny, N,, Nj is given in Ting (1988) in terms of the reduced elastic
compliances s;ﬁ as (see also Ting, 1996, p. 167)

p=su/d, n=ss/4, =ss/4, ny=s(0,1,56,1,5)/4, r,=5(1,5]5,2)/4,

s, =5(1,5]0,1)/4, A=5(1,5) > 0. (2.19)
In the above, §'(ny, ..., ng|my, ..., m;) is the k x k minor of the matrix s;ﬁ, the elements of which belong to
the rows of s;/j, numbered ny,...,n; and columns numbered m;,...,m;, 1 <k<6. A principal minor is
s'(nyy ... mlny, ... ng), which is written as s'(ny,...,n;) for simplicity. Removing the third row and the

third column of s/, that contain only zero elements, the 5x 5 matrix is positive definite. Hence 4 > 0. p is
the shear modulus when the material is isotropic. An explicit expression of N, N, N; in terms of the elastic
stiffnesses C,; is given in Barnett and Chadwick (1990).

3. Equations for the polarization vector

At the free surface x, =0, (2.11), gives
u(x;,0,¢) = age™@™ a, = Aq, (3.1)

where ap is the polarization vector of the surface waves at the free boundary. Eq. (2.15) consists of two
equations,

Nla + sz = pa,

T (3.2)
(N; +XI)a+ N;b = pb.
A linear superposition of three equations obtained from (3.2), with p = p, p», p; leads to
(N; + XI)Aq + N/Bq = B{p.)q. (3.3)

The six-vectors (a,, b,) and (bg, ag) are orthogonal to each other when p, # ps. The orthogonality relation
can be written as (Barnett and Lothe, 1973; see also Ting, 1996, p. 146)

B'A+A'B=0. (3.4)
Pre-multiplying (3.3) by qTKT and using (3.4), (3.1),, (2.13), we obtain
a;(N; + XTDag = 0. (3.5)

Hence X is bounded by the largest and smallest eigenvalues of —Nj; (Ting, 1996, p. 472). When X = 0, (3.5)
recovers the identity obtained by Stroh (1958).
Eq. (3.5) can be generalized. First we generalize (2.15) as
N'¢ =p"¢, (3.6)

where n is any positive or negative integer. Let

N(”) N(”)
N" = 1 2. (3.7)
K" N
in which

N(‘) =Nj, N(') =N, KOV = N; + XL (38)
1 2
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For n = —1, it can be shown that (Ting, 1996, p. 451)
NCV=NTUR, NSV =—(@Q-xD)!, KTV =T+R'N{VR (3.9)

According to the Cayley—Hamilton theorem (Hohn, 1965), a matrix satisfies its own characteristic equa-
tion. Since N is a 6 x 6 matrix only five of N” are independent. Other N” can be expressed in terms of the five
N". Hence it suffices to consider N" for five different n. Eq. (3.6) consists of two equations of which the
second one is

K"a +N"'b = pb. (3.10)
Following the derivation of (3.5) from (3.2), we obtain from (3.10)
arK"a, = 0. (3.11)

Choosing any five n, we have the equations for the polarization vector az. For n = 1,2, —2, it recovers the
identities (3.23) and (3.24),, in Currie (1979).
From N"™*! = N'"N*! = N*'N" we obtain

NUD = NPINEY 1 NPPK D = NEFUND) 4 NGFUKR ), (3.12a)
NUED = NPNGED 4 NONGDT = NEDNGD 4 NN (3.12b)
K(nil) _ K(n>N§:H) 4 N§”>TK(i1) — K(il)N(1”> + N(liUTKM)' (312(:)

Adding the two expressions for K™V in (3.12¢) leads to
2K = KON 4 NEVKO) 4 [KEDN 4 NOTKED), (3.13)

It tells us that if K™ is symmetric so is K"*". Since K" and K™V are symmetric, K™ is symmetric for all n.
Likewise, it can be shown that N(z”) is symmetric for all n. The matrices Ny, N, N3 do not depend on X.
From (3.8) and (3.12), the elements of K™ are polynomial in X of degree no more than one for n = 1,2, no
more than two for n = 3,4, and no more than three for n = 5.

Assuming that x; = 0 is not a polarization plane, let

a, =[1, o, f. (3.14)
Eq. (3.11) can be written in full as

KV Koo+ K3 BB o+ Ky (o4 3) + K1 (B o+ B) + K33 (a + ) = 0. (3.15)
Setting n = 1-5, (3.15) provides five equations that can be solved for, say,

ata=fi, aa=f, B+B=rfi, BB=fo oB+aB=/s (3.16)

When o, a, f, f are computed from the first four equations and the results are inserted into the fifth
equation in (3.16), Taziev (1989) obtained the secular equation

[ifa+Fih+ 15— fififs —4ffa =0 (3.17)

for a general anisotropic elastic material.
It is not known if there exists a case in which x; = 0 is a polarization plane. If it exists, both « and f§
computed from (3.16) would be unbounded. In this case, (3.14) is replaced by

a;: [1/0(, 1, ﬁ/a] or [1/ﬁ7 a/ﬁv 1] (318)
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It is known that x, = 0 is the polarization plane for one-component surface waves (see Section 8).
Barnett (1992) has shown that x, = 0 cannot be a polarization plane for a subsonic two-component surface
waves. The question is open if x, = 0 can be a polarization plane for three-component and supersonic
surface waves.

The 3x3 symmetric matrices K" can be computed recursively using (3.12a), and (3.12c). The compu-
tation of K" becomes more complicated for the higher orders n = 4 and 5. Instead of n = 4 and 5 we can
replace them by n = —1 and —2. The K" for monoclinic materials with the symmetry plane at x; = 0,
x; = 0 or x, = 0 are presented in Appendix A.

4. The polarization vector ap
Taziev (1989) was interested mainly in the secular equation (3.17). He was not interested in the polar-

ization vector even though the o, &, f, f computed from the first four equations in (3.16) provide the
polarization vector ap defined in (3.14). Let

v=o+in, [=p+if,, (4.1)
where oy, o, fi;, B, are real. The polarization vector (3.14) is
ap = e + e, (4.2)
1 0
€= |0 |, €= |0]|. (43)
B B
Egs. (3.15) and (3.16) are rewritten as
KiY + K35 (o0 +23) + KL (B + B3) + 2K {5 e + 2K(5 By + 2K13 (en By + ) = 0. (4.4)
20 =fi, w+B=r, 2B =L, BiHB=Ln 20up +nh) = f (4.5)

Eq. (4.4) remains the same if o, and f3, change the sign. In the special case of isotropic materials, it is known
that oy = f; = , = 0 while a, < 0. Hence we let

o <0, (46)

so that a, and f8, are unique. We obtain from (4.5); ,,

ocI:fl/Z, azz—\/fz—fl%‘ (47)

To avoid nonuniqueness, it is best to compute f8;, and f, from (4.5);5 as

Bir=13/2, Br=1[(fs/2) — cu ]/ (4.8)

Substitution of (4.8) into (4.5)4 recovers the secular equation (3.17).
The displacement at the free surface shown in (3.1) is

u(xl> 07 t) = (el + ieZ)eik(XIil)t) = él + iéZa (49)
where
€ = e cosy —esiny, & = e siny + e,cosy, (4.10)

and ¥ = k(x; — vr). Since &, () = & (y + n/2), it does not matter if we take the real part &, or the imaginary
part €, as the solution for the displacement at the free surface. As ¢ increases (or s decreases), the dis-
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placement traces an ellipse in the direction from e, to e,. A pair of diameters in an ellipse are said to be
conjugate if all chords parallel to one diameter are bisected by the other diameter. Therefore the tangent to
the ellipse at the extremity of one diameter is parallel to the other diameter. e;, e, are a pair of conjugate
radii, so are €, & (Gibbs, 1961; Synge, 1966; Stone, 1963; Boulanger and Hayes, 1991). When the conjugate
radii are orthogonal to each other, they are the principal radii of the ellipse. The conjugate radii &;, €, are
the principal radii when

261 <€
tan2yy = ——. 4.11
anw €€ —€ € ( )
It is readily shown from (4.10) that (Ting, 1996, p. 26)
€ -€ +e-e =e - +e-e. (412)

Thus the sum of the square of the lengths of the conjugate radii is independent of the choice of the con-
jugate radii, and hence is identical to the sum of the square of the principal radii.

We could also study how the polarization vector varies with respect to the depth at the free surface.
When (2.11), is differentiated with kx, and the result is evaluated at the free surface x, = 0, we have

u'(x,0,7) = iA(p,)qe" ™), (4.13)
where the prime denotes differentiation with kx,. A linear superposition of (3.2); for p = p, p», p; is

NiAq + N,Bq = A{p.)q, (4.14)
or, in view of (2.13) and (3.1),,

A{p.)q = Njag. (4.15)

Hence (4.13) has the expression

u'(x;,0,7) = a7 al = iNjag. (4.16)
Let

a, = €| +ie), (4.17)
where e}, €, are real. Eq. (4.16), tells us that

e’l = —Nlez, e’2 = Nle]. (418)
The differentiations of the square of the length of the vectors e, and e, are

(e1-e) =2e -€, (e -e) =2e-é,. (4.19)

Eq. (4.19) provides information on whether the conjugate radii e; and e, increase their lengths as x, in-
creases.
To study if the polarization plane rotates as x, increases, consider the vector

n=(e Xe), (4.20)
which is normal to the polarization plane. The derivative of n is

n = (e xe, +e xe). (4.21)
If n’ is co-directional with n, i.e.,

e-n =0, e-n =0, (4.22)
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the polarization plane does not rotate. Hence when
le;,ej,ex] =0, ey, €),e| =0, (4.23)

the polarization plane does not rotate as x; increases. Otherwise it rotates.

5. Orthotropic materials

When the material is orthotropic, the reduced elastic compliances s, vanish for o, f = 4,5, 6 except s,
S5, Sge- The anti-plane and in-plane displacements are uncoupled so that only the in-plane displacement
need to be considered. The polarization vector ag is a two-vector and the matrices K™ are 2x2 matrices.
Explicit expressions of K™ for n=1,2,—1, can be obtained by specializing the K for monoclinic
materials shown in Appendix A. The nonzero elements are

Ky = —(1 =51, X)/s,,
k) =x,
2
K1(2) =[1- ( slz) ]/sll’ (5.1)
KV ==X /(1 = s,eX),

Ky = (1= 53,2)/[s, — 5'(1,2)X].
Eq. (4.4) forn=1,2,—1 are
Ky + X (o +03) = 0,
Klg)al =0, (5.2)
D4 kS (@ +0d) = 0.
Since Kg) # 0, (5.2), tells us that o; = 0. Hence,

e = {(ﬂ, e = L?J (5.3a)

Eq. (5.2); gives, noticing that o, < 0 from (4.6),
2= /(1= $4,X)/(5,X) = —/(Ca — X)/(CuX). (5.3b)

The second equality in (5.3b) is obtained by using the transformation rules between s/, and C,; (Ting,
1997). Elimination of (o2 + o3) between (5.2); 5 yields

XKV - KRG =0, (5.42)

or
(1- S,IIX)z(l — sgX) = sy sy, — 5'(1,2)X]X* = 0. (5.4b)

This is the secular equation in terms of s),. The secular equation in terms of C,; was derived by Sveklo
(1948) and Stoneley (1963).
The matrix N, which is a 2x2 matrix here, can be obtained from (2.18), (2.19) as

0 -1 0 -1
N = = . 55
: [sllz/s,n 0 ] [C12/C22 0 ] (5.5)
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Eqgs. (4.18) and (5.3a) give

/o 0 /o 0
e = [O}’ e, = [5'12/5'11} (5.6)

The conjugate radii e[, e, shown in (5.3a) are orthogonal to each other so that ey, e, are the principal axes of
the ellipse. Egs. (5.3a) and (5.6) tell us that the principal axes are fixed along the x;- and x,-axes. From
(4.19) we also have

(e1 . el)/ = 20(2, (ez . 62)/ = 20(2S/12/S,11. (57)

Since o, < 0, the principal axis e; decreases its length as x, increases. As to the principal axis e,, it increases
(or decreases) its length when s}, < 0 (or s}, > 0). In the special case of isotropic materials, s}, = —v/(2u)
where p and v are the shear modulus and Poisson ratio, respectively. The Poisson ratio v is often assumed
positive so that the principal axis e, increases its length, as stated in the literature. Theoreti-
cally, — < v < 1/2 is sufficient to insure the positivity of strain energy density. Thus v can be negative for
isotropic materials, and e, can decrease its length as x, increases.

6. Monoclinic materials with the symmetry plane at x;=0

When the material has a symmetry plane at x; = 0,
S1a = Shy = 8|5 = 8hs = 845 = S5 = 0. (6.1)

Again we need to consider only the in-plane deformation so that a is a two-vector and K™ are 2x2
matrices. Explicit expressions of K™ for n = 1,2, —1, are shown in Appendix A. Eq. (4.4) forn=1,2,—1
are

K + X2 +02) =0,
K} + 2K 0 =0, (6.2)
K+ K5 (o +93) +2K1; o = 0,

Egs. (6.2),, give

20 = KK, o = K, 63
or
she(1 = s1,X)
= = —/[(1 =}, X)/(s7,X)] — od. 6.4
= g 2= V0 s/ 0] - o (6.42)

The conjugate radii are

o-1] w=[2] o

The principal radii are located at, from (4.11),

2
tan 2y = -2 6.5)

o — (1 +a7)

The e, e, in (6.4) are not the principal radii unless o; = 0, i.e., s}, = 0. It should be noted that e;, e, in (6.4)
are identical to e, e, in (5.3) for orthotropic materials when s}, = 0 but s, need not vanish.
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When (6.3) is inserted into (6.2); we have
K XKL — KKy ) - XKL =0, (6.62)
or
(1= (55, = X (1= 54,207 (1 = s6X) = o}, s — /(1,2)X]X° |
— $16(1 = $1,X)[(s75 = 2556) (1 = 51,.X) — s},57X]X* = 0. (6.6b)

This is the most explicit secular equation obtained in Ting (2002¢). Less explicit expressions were derived by
Currie (1979), Destrade (2001) and Ting (2002a). In the special case of orthotropic materials, s}, = 55, = 0
so that, by inspection, (6.6b) simplifies to the secular equation in (5.4b) because [1 — (s}, — s7,)X] # 0. In
reducing (6.6b) to (5.4b), s5 need not vanish. Thus, when s{; = 0, the secular equation for monoclinic
materials with the symmetry plane at x; = 0 is identical to that for orthotropic materials. Another special
case is when s, = 0. The secular equation (6.6b) is a product of (1 — s}, X)* and a quadratic equation in X
(Ting, 2004). The smaller root of the quadratic equation is

— 1 ! / 1 ! / /
X' = B (81 + 566) + B \/(511 - Slés)z + 451155, + 4si(s16 — 285)- (6.7a)
Eq. (6.4a) simplifies to
a1 = sofshys o= =/ (s, X) " = (1+22). (6.7b)

Thus, when s}, = 0, we have the exact expressions of X and the polarization vector az. Other special cases
for which an exact X can be obtained are presented in Ting (2004).
The matrix N, is

o -1
Ni=|,,, . 6.8
: [512/511 0 ] (6:8)

Egs. (4.18) and (4.19) reproduce (5.6) and (5.7) which are for orthotropic materials. Thus, as x, increases,
e; decreases its length while e; increases (or decreases) its length when s}, < 0 (or s}, > 0).

7. Monoclinic materials with the symmetry plane at x; =0
When the material has a symmetry plane at x; =0,
Sis = Shs = Sy = She = S4s = Sjg = 0. (7.1)

The symmetric matrices K have the structure

* 0 0 0 x =x
0 « x| or [+ 0 O (7.2)
0 * = * 0 0

The first of (7.2) applies to K", n=1,3,—1, while the second of (7.2) applies to n =2, —2. Explicit
expressions of the * elements of K" are given in Appendix A.
Eq. (4.14) for n = 2, -2 simplifies to
Kg)ocl +K1(§)ﬁ1 = 0, (7 3)
Ky + K37 = 0.

This is satisfied if «; = f; = 0. We show in Appendix B that this is indeed the case. Hence the conjugate
radii are
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1 0
€ = 0 s €= [0 |. (74)
0 B

For n=1,-1,3, (4.4) has the expression
Ky +Xo3 + Kyl =0,
Ki !+ Ky Vg + K3y VB + Kay ' (200f) = 0, (7.5)
Ki) + K525 + K B3+ K33 (200,) = 0.

This is rewritten as

K205 + k3ﬁ§ + k4(202,) = —kqy, (7.6)
where
K x K 0,
_ -1 — -
k, = Kl(l Dl k= K2((23>) , k= K3(3 Dl k= Kéé)) (7.7)
Kﬁ) K22 KS) K23

From (7.6) we obtain

— ki, ks, kq — k2, ks, ki
O( = — —_— :—’ 788.
VT I PN (7.8a)

and

2 _|k27 kla k4‘

ﬁZ |k27 k37 k4‘ ( )
Elimination of o,, f/, among the three equations in (7.8) yields

ki, ko, Ks|” + 4|k, ks, Ky| - ki, ks, k| = 0. (7.9)

This is a new secular equation which is different from the secular equations obtained in Ting (2002a,b).
From the relation

ki, k;, k| = (k; x k;) 'k, = k! (k; x k;), (7.10)
where the vector product (k; x k;) is a column matrix, (7.9) can be rewritten as
(k; x k3)" (4ksk} — kok!D)(k; x ky) = 0. (7.11)
In the special case of orthotropic materials, ks = 0 so that (7.9) reduces to
ki, ks, k3| =0. (7.12)
The element Kl(? in Appendix A simplifies to, for orthotropic materials,
Sllleﬁ) = 515[2 = (25} — $7,)X] + 566(1 — S,11X)2~ (7.13)

It can then be shown that, when (5.4b) holds, k; and k, are proportional to each other. Hence (7.12) holds
for orthotropic materials. It is a challenge to show that , =0 and «, reduces to (5.3b) for orthotropic
materials. This is another example that shows that special cases are best treated separately.

The conjugate radii e, e; shown in (7.4) are orthogonal to each other so that they are the principal radii.
e; is along the x;-axis while e, is on the plane x; = 0. The matrix N; computed from (2.18) is
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0 -1 AYS
Ni={rn, 0 0], (7.14a)
ra 0 0
where
ry =580 /8h ra =81/, se = S5/85s (7.14b)
Egs. (4.18) and (4.19) give
% — BaSe 0
e = 0 , &= |n/|, (7.15)
0 g
(el . el)’ = 2(&2 — ﬁ2S6), (ez . ez), = 2(0(2}"2 + ﬁ2V4). (716)

In conjunction with (7.4), they tell us that the principal axis e; remains along the x;-axis as x, increases, and
increases (or decreases) its length if o, — ff,56 > 0 (or <0). The principal axis e, stays on the plane x; = 0 as
X, increases. It increases (or decreases) its length if o7, + 74 > 0 (or <0). Eq. (4.23), is satisfied while
(4.23), is

|e2, e/z, e|| =K, K = OFygy — ﬁzl”z. (717)

If « =0, the vector e, does not rotate as x, increases. Otherwise it rotates about the e;-axis counter-
clockwise (or clockwise) when x > 0 (or <0).

8. Monoclinic materials with the symmetry plane at x, =0

When the material has a symmetry plane at x, = 0,
Sia = Shy = S\ = Sh = S4s = S5 = 0. (8.1)
The symmetric matrices K" have the structure

0 0

or (8.2)

* O *

0
*k
0

* O *

* O ¥

* *
0 0
The first of (8.2) applies to K", n=1,3,—1, while the second of (8.2) applies to n =2, —2. Explicit
expressions of the  elements of K™ are given in Appendix A.

Eq. (4.4) for n = 2, —2 simplifies to

Ko + K5 (1) + oapy) =0,

. ) (8.3)
K1(22)°‘1 +K§3 2)(051/31 +wp,) = 0.

This is satisfied if o; = , = 0. We show in Appendix B that this is indeed the case. Hence the conjugate
radii are

1 0
e = 0 , €= [dy|. (84)
B 0
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For n=1,3,—1, (4.4) has the expression
Ky +Xo5 + K3y B + K13 (2,) = 0,
K"+ Ky Vo + KB+ K15 (28) = 0, (8.5)
KiK' + Ky B + K13 (26)) = 0.

This is rewritten as

kzai + k3ﬁ% +ks(2p,) = —ki, (8.6)
where
1 1 1
Kl(l) {1) K§3) K1(3)
kl - Kl(l_l) 9 k2 = K2(23> ) k? — K3(;1) ) k5 - Kl(;l) (8 7)
3 3 3
Kfl) K» K3(3) K1(3)

From (8.6) we obtain

_|k17 k3; k5| _|k2a k37 k1|
Y el ST | R e L T LT 8.8a
TN e e ks P T 2, K | (8.8a)

and
2 7|k27 kla kS‘
=== 70 8.8b
ﬂl |k27 k37 kS‘ ( )
Substitution of 5, from (8.8a) into (8.8b) yields
ki, ko, Ks|” +4|ks, k3, Ks| - [ko, ki, ks| = 0. (8.9)

This is a new secular equation which is different from the secular equations obtained in Ting (2002a,b). In
the special case of orthotropic materials, ks = 0 so that (8.9) reduces to (7.12) which, as stated there, holds
when (5.4b) holds. Using (7.10), (8.9) can be rewritten as

(ks x ks) " (4ksk! — k kD) (k, x k) = 0. (8.10)

The conjugate radii e, e; shown in (8.4) are orthogonal to each other so that they are the principal radii.
e; is on the plane x, = 0 while e, is along the negative x,-axis. The matrix N; computed from (2.18) is

0 -1 0
Nl = | 0 S2 |, (811a)
0O 0 O
where
_s’(1,5|27 5) _s’(1,5|1,2)

rz—w7 5 = (1,5 (8.11Db)

Eqgs. (4.18) and (4.19) give
[0%) 0
€ =10, €&=|n+phs|, (8.12)
0 0

(e1 . el)' = 20(2, (ez . ez), = 20(2(1"2 + ﬂ1S2). (813)
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In conjunction with (8.4), they tell us that the principal axis e, stays on the plane x; = 0 as x, increases, and
decreases its length since o, < 0. The principal axis e, remains along the x,-axis as x, increases. It increases
(or decreases) its length if 7, + ;52 < 0 (or >0). Eq. (4.23), is satisfied while (4.23), is

le1, €], e] = p03. (8.14)

If B, =0, e; does not rotate as x, increases. Otherwise, it rotates about the e,-axis counter-clockwise (or
clockwise) when f; > 0 (or <0).

9. Two- and one-component surface waves

The analysis presented in Sections 3 and 4 assumed that the surface wave consists of three partial waves
so that all three components of the constant vector q in (2.13) are nonzero. For a two-component surface
wave, we can set g3 = 0 so that q is a two-vector. The vectors a; and b; are not needed. Hence the matrices
A and B consist of two columns, and are 3 x 2 matrices. With these modifications, all derivations in Sections
3 and 4 remain valid for two-component surface waves.

In the case of one-component surface waves, we may set ¢; = 1 and ¢, = g3 = 0. Thus q is replaced by a
scalar of unity while A and B are replaced by single vectors a and b. The polarization vector a is simply a.
For a one-component surface wave it is known that (Barnett and Chadwick, 1990; see also Ting, 1996,
Section 12.8)

Y Y B VA -1
Sy =515 =55=0, 5 =s5=X"". (9.1)

It can then be shown that K vanishes for n = 2,4, —2. Forn = 1,3,5, —1, Kg) is the only nonzero element
of K. In fact

Kzg) =1/sy, KS) = $h/51s Kg) = s5/87- (9.2)
Thus (4.4) is trivially satisfied for n = 2,4, -2, and
K3 (o3 +03) =0, 9.3)

for n=1,3,5,—1. In view of (9.2), (9.3) gives o; = op = 0. Thus the polarization vector is on the plane
x; = 0, confirming what is known in the literature. Unfortunately, the present analysis do not determine f3,
and f,.

10. Concluding remarks

The secular equation due to Taziev (1989) for a general anisotropic elastic material is derived using a
different derivation. In the process, an explicit expression of the polarization vector is obtained. The same
derivation is employed to obtain the secular equations and the polarization vectors e; + ie, for orthotropic
and monoclinic materials with the symmetry plane at x; = 0, x; = 0 or x, = 0. The displacement at the free
surface traces an elliptic path for which e, e, are a pair of conjugate radii of the ellipse. New secular
equations are obtained for monoclinic materials with the symmetry plane at x; = 0 or x, = 0. The vectors
e;, e, are explicit in terms of the elastic compliances and X = pv> where p and v are the mass density and
surface wave speed, respectively. They will be useful as test examples for a numerical solution of surface
waves. For monoclinic materials with the symmetry plane at x; = 0 (or x, = 0), the polarization plane
contains the x;-axis (or the x,-axis) which is a principal axis of the ellipse. We also study if e, e, and the
polarization plane change as we moves away from the free surface.
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Appendix A. The matrix K™ for monoclinic materials

The elements of the 3x 3 symmetric matrices K can be computed using the recursive formula (3.12).

() and K"V are obtained from (3.8) and (3.9) in which the quantities needed in the equations can be found

in (2.7b), (2.18) and (2.19). The expressions in terms of s, and its minors can be converted to C,; and its

minors, and vice versa (Ting, 1997). Listed below are K" for monoclinic materials with the symmetry plane

atx; = 0, x; = 0, and x, = 0. As pointed out below, explicit expressions of some of the elements of K" are
not needed in the paper.

A.1. Symmetry plane at x3 = 0

The s, shown in (6.1) vanish for this case. Since the in- plane and the anti-plane deformations are
uncoupled 1t sufﬁces to consider the in-plane deformation. The K™ are reduced to 2x2 matrices so that
only K11 , K22 and K12 are shown below.

1 1 1
K1(1> =X - (1/sy), Kéz) =X, Kfz) =0,

2 2

K1(1> = —2s)(1 — sy, )/Sm Kz(z) =0,
2

K1(2>[1 = (shy = s1)X1 /s,

K[V = —[C(1,6) — CeeX]X /D5 = —[sh, — 5'(1,2)X]X /D),
;) ={C(1,2,6) — [C(1,2) + C(2,6)]X + CpX?}/D;
= [(1 = s, X)(1 = s4eX) — (s16X)*)/D,
iy = =[C(1,2[1,6) = CoX]X /D5 = [shs — (1,2]1,6)X]X /DY,
where
D; = (Cy — X)(Ce — X) — Cy,
Dy = s, — [§(2,6) +5'(1,2)]X +5'(1,2,6)X>
= [shy — 5'(1,2)X](1 — sk X) + 575" (1, 2]2, 6) X7 + shy[shs — s'(1,2[1,6)X]X

It should be noted that D; or D} is a common factor for Ki_(fl) so that it can be deleted in using (6.2); and
(6.62).

A.2. Symmetry plane at x; = 0

The s, shown in (7.1) vanish for this case. The matrices K™ have the structure (7.2) forn=1,3,—1 and
the structure (7.2), for n = 2, —2. Listed below are the % elements of K" shown in (7.2).

1 / 1
Kl(l):X_(l/Sn)v K§2>:X7
1 1
K3(3) =X - (1/5/55)7 K§3> =0,
2 /
SI11K1(2> =1— (s}, —s1)X,

2
S/lls/SSK{; = —5,(1 = 55X) — s5(1 — 57, X),
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3555/121K1(i) = 553X — si3(1 = s55X)
— [2(s1455 — 512555) — 5'(5,6)(1 — 53, X)](1 — 57,.X),
siKY = =1+ (s}, — 251,)X +5/(1,2)X7,
5/115/525[{35 = 3/526(1 — 511 X) — [281455 — s'(1,4) (1 — s5sX)] (1 — s55X),
Si1855Kss) = 5[l = (511 = $12)X] 4[5} = (1,21 X)](1 = s45X),

Kff” = —[C(5,6) — CeeX]X /Dy = —(1 — 54 X)X /D),
— CpX]/(Cry — X) = [s)y — §'(1,4)X]/Dy,

K" = [C(1,4) = CuX]/(Ciy = X) = [shy — /(1,2)X]/ Dy,

KV =1C(1,2]1,4) — CouX]/(Cri = X) = =[shy —§/(1,2]1,4)X]/ D,
where

Dy = (Css — X)(Cgs — X) — C3,

Dy = (1 = 545X )(1 = 546 X) — (546X )%,

D) =5(2,4) —5(1,2,4)X

Kol
& |
||

®)
—~
=
N
~—

It should be noted that explicit expressions of K and K™ are not needed in (7.3) because o; and p; in

(7.3) vanish. However, we need K? to compute K®
A.3. Symmetry plane at x; = 0

The Sozﬁ shown in (8.1) vanish for this case. The matrices K™ have the structure (8.2); forn=1,3,
the structure (8.2), for n = 2, —2. Listed below are the * elements of K™ shown in (8.2).
Ky =X —[sis/s/(1,5)], Ky =X,
Ky =X = [5,/¢(19)], Ky =s5/5/(1,5),

§(1,5K7 = s +[5'(1,5]2,5) — 5'(1,5)]x
s'(1,5K% = - +5/(1,2/1,5)x

[s'(1, 5)] 1 —S214S15+[ (1,5|2,5)]2X
+{25'(1,5[2,5) = 265546 + sels5s — ' (1, 5)X}sss — 5'(1,5)X],
$'(1,5)K8) = s+ [5/(1,5) — 25 (1,5]2,5)]X +5(1,2,5)X2,
[/ (1, )PKG) = siess — (1,211, 5)[28)5 = (1, 2]1, 5)]
— {25550 — sualshy — s'(1, 5)X] sy, —5'(1,5)X],
[/ (1, S)PKE = =/(1,5]2, 5)[s)s — 5'(1,2]1,5)X]

+ 5151815546 — Sialsy, — 5'(1,5)X]}
+ {S/(172|1»5) - S15S66 +S46[S11 _Sl(la S)X]}[Slss - 5/(1»5))(]7

—1and
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K" = —CoeX /(Cos — X) = =5, X | D3,
KLY ={C(1,2,5) = [C(1,2) + C(2,5)]X + CpX?}/D,
= [(1 =5, X)(1 = si5X) — (5}5X)7)/ D,
K" = [C(4,6) = CuX]/(Cos — X) = (1 = sX)/ Do,
K" = —CusX /(Cos — X) = 86X/ D3,
where
Dy = (Cii = X)(Css = X) = Cis,
D, =5y, —[5'(1,2) +5(2,5)]X +5'(1,2, 5)X27
Dy = s, — 5'(4,6)X.

Again, explicit expressions of K¥ and K" are not needed in (8.3) because o; and p, in (8.3) vanish.
However, we need K? to compute K®.

Appendix B. Polarization planes for monoclinic materials

We will show that the polarization plane for monoclinic materials with the symmetry plane at x; = 0 (or
x, = 0) contains the x;-axis (or the x,-axis) as shown in (7.4) (or (8.4)).

For monoclinic materials with the symmetry plane at x; = 0, the eigenrelation (2.4) and the vector b in
(2.8); have the expression

Cii +p°Css p(Cia+ Ces)  p(Cia+ Cso)
Fa= |p(Cin+Ce) Co+p’Cn  Css+p*Coyu |2a=0, (B.1)
p(Cia+Css)  Csg+p*Cos Css + p*Cua

PCss  Ces  Csg
b= C12 PC22 pC24 a. (BZ)
Cuu  pCy pCuy

The sextic equation |I'| = 0 is a cubic equation in p*. If p}, p3, p3 are all real, we have

Case 1

p=ip, p=ip, p=ip (B-3)
If p?, p3 are complex conjugates and p3 is real, we have
Case 11

pr="ntin, p=—ntin, p=in (B.4)

In (B.3) and (B.4), y,, 7,, y; are real and positive.
Consider Case I first. The eigenvectors a; (k = 1,2, 3) of (B.1) assume the structure

a, = [R, I, I, (B.5)

where R and [ stand for real and pure imaginary, respectively. The vectors b, computed from (B.2) have the
structure

b, =[I, R, R]. (B.6)
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The vanishing of the surface traction Bq = 0 in (2.13) is satisfied by taking

q' =R, R, R (B.7)
The polarization vector ap = Aq then gives

a, = (R, I, I]. (B.8)

This proves (7.4).
For Case II for which the eigenvalues p are given by (B.4),

po=—p and p3=iy;. (B.9)

Let the eigenvector a; associated with p; be given by

a; = [&, &, &l (B.10a)
It can be shown from (B.1) that
a; = [_217 527 53]7 (BlOb)
a, = (R, I, I]. (B.10c)
Likewise, if the vector b; computed from (B.2) is
blr = [7’17 M2, ]73]7 (Blla)
we have
by = [, =7, —7is), (B.11b)
by =[I, R, R]. (B.11c)
The vanishing of the surface traction Bq = 0 in (2.13) is satisfied by taking
qT = [;“7 _7“7 R] (B12)
The polarization vector ap = Aq then gives
; & —& R ’ ISEISE
=& & I||—A| =G-8+, (B.13)
& &G R Ay — A&+ 1

which leads to (B.8). This completes the proof.
For monoclinic materials with the symmetry plane at x, = 0, (B.1) and (B.2) are replaced by

Cii +p*Css  p(Cia+ Coss)  Cis+ p*Cus
I'a= p(CIZ + C66) Ces +p2C22 p(C46 + C25) a=>0 (B14)
Cis+p*Css p(Cag+ Cas)  Css+ p*Cus
PCss  Css  pCias
b= CIZ psz C25 a. (BlS)
PCs  Css  pCus

Again, |I'| = 0 is a cubic equation in p* so that either (B.3) or (B.4) applies. For Case I, we have
a, =[R, I, R (k=1,2,3). (B.16)
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The vectors b, computed from (B.15) have the structure
b, =[I, R, . (B.17)
The vanishing of the surface traction Bq = 0 is satisfied by taking
q" =R, R, R]. (B.18)
The polarization vector az = Aq then gives
a, =[R, I, R]. (B.19)

This proves (8.4).

For Case II for which the eigenvalues p are given by (B.4) or (B.9), it can be shown that the polarization
vector also has the structure (B.19). The proof is similar to the one for monoclinic materials with the
symmetry plane at x; = 0.
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