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Abstract

The displacement at the free surface of an anisotropic elastic half-space x2 > 0 generated by a surface wave prop-

agating in the direction of the x1-axis traces an elliptic path. It is represented by the polarization vector aR ¼ e1 þ ie2,

where e1, e2 are the conjugate radii of the ellipse on the polarization plane. The displacement traces the ellipse in the

direction from e1 to e2. We present explicit expressions of e1, e2 and the secular equation without computing the Stroh

eigenvalues p and the associated eigenvectors a and b. After presenting the expressions for a general anisotropic elastic

material, the special cases are studied separately. For monoclinic materials with the symmetry plane at x3 ¼ 0, the

secular equation and the conjugate radii e1, e2 are identical to that for orthotropic materials when s016 ¼ 0 but s026 need
not vanish. For monoclinic materials with the symmetry plane at x1 ¼ 0, e1 is along the x1-axis while e2 is on the plane

x1 ¼ 0. If the symmetry plane is at x2 ¼ 0, e1 is on the plane x2 ¼ 0 while e2 is along the negative x2-axis. In both cases,

e1, e2 are the principal radii of the ellipse. We also present the derivative of aR with respect to x2, the depth from the free

surface, that provides information on (i) whether the conjugate radii of the ellipse increase as x2 increases and (ii)

whether the polarization plane rotates as x2 increases. New secular equations are obtained for monoclinic materials with

the symmetry plane at x1 ¼ 0 or x2 ¼ 0.
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1. Introduction

A surface wave propagating in the direction of the x1-axis in an anisotropic elastic half-space x2 > 0 in

general consists of two or three inhomogeneous partial waves. The displacement u is expressed in terms of

the Stroh eigenvalues pa and the associated eigenvectors aa ða ¼ 1; 2; 3Þ. The stress is expressed in terms of

another eigenvectors ba ða ¼ 1; 2; 3Þ. The vanishing of the surface traction at the free surface is achieved by
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finding a proper linear superposition of ba. The same linear superposition of aa provides the polarization

vector aR at the free surface. With this approach, an explicit expression of aR can be obtained only for

special anisotropic materials.

We present a set of equations that govern the polarization vector aR. The equations were originally
derived by Taziev (1989) but he was interested mainly in obtaining an explicit expression for secular

equation. He did have the expression for the polarization vector but it was not explicit. What prevented him

from obtaining an explicit expression for aR was that explicit expressions of the matrices N1, N2, N3 were

not available in his time. He tried to employ the result for a general anisotropic elastic material to special

materials. Examples in the literature show that this is very often not the best way to study surface waves for

special materials.

The Stroh (1958, 1962) formalism is introduced briefly in Section 2 which is employed in Section 3 to

derive the secular equation obtained by Taziev (1989). An explicit expression of the polarization vector aR
for a general anisotropic elastic material is presented in Section 4. Also presented is the derivative of aR with

respect to x2. The secular equation and the polarization vector and its derivative for special materials are

best studied separately instead of specializing the general result. Thus the special cases of orthotropic and

monoclinic materials with the symmetry plane at x3 ¼ 0, x1 ¼ 0 or x2 ¼ 0 are discussed separately in Sec-

tions 5–8. New secular equations are obtained for monoclinic materials with the symmetry plane at x1 ¼ 0

or x2 ¼ 0. It is shown in Section 9 that the derivation presented here applies to two- and one-component

surface waves as well so that the results are valid for both subsonic and supersonic surface waves.
2. The Stroh formalism

In a fixed rectangular coordinate system xi ði ¼ 1; 2; 3Þ let ui and rij be the displacement and stress in an

anisotropic elastic material. The stress–strain law and the equation of motion are
rij ¼ Cijksuk;s; ð2:1Þ

Cijksuk;sj ¼ q€ui; ð2:2Þ
in which repeated indices imply summation, q is the mass density, the comma denotes differentiation with

xi, the dot stands for differentiation with time t, and Cijks is the elastic stiffness that is assumed to possess the

full symmetry. Consider an inhomogeneous plane wave with the steady wave speed t propagating in the

direction of the x1-axis. A solution for the displacement vector u of Eq. (2.2) can be written as (Stroh, 1962)
u ¼ aeikz; z ¼ x1 � tt þ px2; ð2:3Þ
in which k is the real wave number, and p and a satisfy the eigenrelation
Ca ¼ 0; ð2:4Þ

C ¼ Q� X Iþ pðRþ RTÞ þ p2T; ð2:5Þ

X ¼ qt2: ð2:6Þ
In the above the superscript T stands for the transpose, I is the unit matrix, and Q, R, T are 3 · 3 matrices

whose elements are
Qik ¼ Ci1k1; Rik ¼ Ci1k2; Tik ¼ Ci2k2: ð2:7aÞ
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In the contracted notation Cab they are
Q ¼
C11 C16 C15

C61 C66 C65

C51 C56 C55

24 35; R ¼
C16 C12 C14

C66 C62 C64

C56 C52 C54

24 35; T ¼
C66 C62 C64

C26 C22 C24

C46 C42 C44

24 35: ð2:7bÞ
The matrices Q and T are symmetric and positive definite. Introducing the new vector b defined by
b ¼ ðRT þ pTÞa ¼ �½p�1ðQ� X IÞ þ R�a ð2:8Þ

in which the second equality follows from (2.4), the stress determined from (2.1) can be written as
ri1 ¼ �/i;2 � qt _ui; ri2 ¼ /i;1: ð2:9Þ

The /i ði ¼ 1; 2; 3Þ are the components of the stress function vector
/ ¼ beikz: ð2:10Þ

There are six eigenvalues pa and six Stroh eigenvectors aa and ba ða ¼ 1; 2; . . . ; 6Þ. When pa are complex

they consist of three pairs of complex conjugates. If p1, p2, p3 are the eigenvalues with a positive imaginary

part, the remaining three eigenvalues are the complex conjugates of p1, p2, p3. Assuming that p1, p2, p3 are
distinct, the general solution obtained from superposing three solutions of (2.3) and (2.10) associated with

p1, p2, p3 can be written in matrix notation as
u ¼ Aheikz� iq; / ¼ Bheikz� iq; ð2:11Þ

where q is an arbitrary constant vector and
A ¼ ½a1; a2; a3�; B ¼ ½b1; b2; b3�; ð2:12aÞ

heikz� i ¼ diag½eikz1 ; eikz2 ; eikz3 �; ð2:12bÞ

za ¼ x1 � tt þ pax2: ð2:12cÞ

For surface waves in the half-space x2 P 0, (2.11)1 assures us that u ! 0 as x2 ! 1. The surface traction at

x2 ¼ 0 vanishes if / ¼ 0 at x2 ¼ 0, i.e.,
Bq ¼ 0: ð2:13Þ

Thus when t is the surface wave speed the determinant of B must vanish,
jBj ¼ 0: ð2:14Þ

This is the secular equation for X .

The two equations in (2.8) can be written in a standard eigenrelation as (Ingebrigtsen and Tonning, 1969;

Barnett and Lothe, 1973; Chadwick and Smith, 1977)
Nn ¼ pn; ð2:15Þ

N ¼ N1 N2

N3 þ X I NT
1

� �
; n ¼ a

b

� �
; ð2:16Þ

N1 ¼ �T�1RT; N2 ¼ T�1; N3 ¼ RT�1RT �Q: ð2:17Þ

The matrix N2 is symmetric and positive definite while N3 is symmetric and positive semi-definite. It is

shown in Ting (1988) that N1, N2, N3 have the structures
�N1 ¼
r6 1 s6
r2 0 s2
r4 0 s4

24 35; N2 ¼
n66 n26 n46
n26 n22 n24
n46 n24 n44

24 35; �N3 ¼
g 0 �j
0 0 0
�j 0 l

24 35: ð2:18Þ
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An explicit expression of the elements of N1, N2, N3 is given in Ting (1988) in terms of the reduced elastic

compliances s0ab as (see also Ting, 1996, p. 167)
l ¼ s011=D; g ¼ s055=D; j ¼ s015=D; nab ¼ s0ða; 1; 5jb; 1; 5Þ=D; ra ¼ s0ð1; 5j5; aÞ=D;

sa ¼ s0ð1; 5ja; 1Þ=D; D ¼ s0ð1; 5Þ > 0: ð2:19Þ
In the above, s0ðn1; . . . ; nkjm1; . . . ;mkÞ is the k � k minor of the matrix s0ab, the elements of which belong to

the rows of s0ab, numbered n1; . . . ; nk and columns numbered m1; . . . ;mk, 16 k6 6. A principal minor is

s0ðn1; . . . ; nkjn1; . . . ; nkÞ, which is written as s0ðn1; . . . ; nkÞ for simplicity. Removing the third row and the
third column of s0ab that contain only zero elements, the 5 · 5 matrix is positive definite. Hence D > 0. l is

the shear modulus when the material is isotropic. An explicit expression of N1, N2, N3 in terms of the elastic

stiffnesses Cab is given in Barnett and Chadwick (1990).
3. Equations for the polarization vector

At the free surface x2 ¼ 0, (2.11)1 gives
uðx1; 0; tÞ ¼ aRe
ikðx1�ttÞ; aR ¼ Aq; ð3:1Þ
where aR is the polarization vector of the surface waves at the free boundary. Eq. (2.15) consists of two

equations,
N1aþN2b ¼ pa;

ðN3 þ X IÞaþNT
1 b ¼ pb:

ð3:2Þ
A linear superposition of three equations obtained from (3.2)2 with p ¼ p1, p2, p3 leads to
ðN3 þ X IÞAqþNT
1Bq ¼ Bhp�iq: ð3:3Þ
The six-vectors ðaa; baÞ and ðbb; abÞ are orthogonal to each other when pa 6¼ pb. The orthogonality relation

can be written as (Barnett and Lothe, 1973; see also Ting, 1996, p. 146)
B
T
Aþ A

T
B ¼ 0: ð3:4Þ
Pre-multiplying (3.3) by �qTA
T
and using (3.4), (3.1)2, (2.13), we obtain
�aTRðN3 þ X IÞaR ¼ 0: ð3:5Þ

Hence X is bounded by the largest and smallest eigenvalues of �N3 (Ting, 1996, p. 472). When X ¼ 0, (3.5)

recovers the identity obtained by Stroh (1958).

Eq. (3.5) can be generalized. First we generalize (2.15) as
Nnn ¼ pnn; ð3:6Þ

where n is any positive or negative integer. Let
Nn ¼ N
ðnÞ
1 N

ðnÞ
2

KðnÞ N
ðnÞT
1

" #
ð3:7Þ
in which
N
ð1Þ
1 ¼ N1; N

ð1Þ
2 ¼ N2; Kð1Þ ¼ N3 þ X I: ð3:8Þ
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For n ¼ �1, it can be shown that (Ting, 1996, p. 451)
N
ð�1Þ
1 ¼ N

ð�1Þ
2 R; N

ð�1Þ
2 ¼ �ðQ� X IÞ�1

; Kð�1Þ ¼ Tþ RTN
ð�1Þ
2 R: ð3:9Þ
According to the Cayley–Hamilton theorem (Hohn, 1965), a matrix satisfies its own characteristic equa-

tion. Since N is a 6 · 6 matrix only five of Nn are independent. Other Nn can be expressed in terms of the five

Nn. Hence it suffices to consider Nn for five different n. Eq. (3.6) consists of two equations of which the

second one is
KðnÞaþN
ðnÞT
1 b ¼ pnb: ð3:10Þ
Following the derivation of (3.5) from (3.2), we obtain from (3.10)
�aTRK
ðnÞaR ¼ 0: ð3:11Þ
Choosing any five n, we have the equations for the polarization vector aR. For n ¼ 1; 2;�2, it recovers the

identities (3.23) and (3.24)1;2 in Currie (1979).

From Nn�1 ¼ NnN�1 ¼ N�1Nn we obtain
N
ðn�1Þ
1 ¼ N

ðnÞ
1 N

ð�1Þ
1 þN

ðnÞ
2 Kð�1Þ ¼ N

ð�1Þ
1 N

ðnÞ
1 þN

ð�1Þ
2 KðnÞ; ð3:12aÞ

N
ðn�1Þ
2 ¼ N

ðnÞ
1 N

ð�1Þ
2 þN

ðnÞ
2 N

ð�1ÞT
1 ¼ N

ð�1Þ
1 N

ðnÞ
2 þN

ð�1Þ
2 N

ðnÞT
1 ; ð3:12bÞ

Kðn�1Þ ¼ KðnÞN
ð�1Þ
1 þN

ðnÞT
1 Kð�1Þ ¼ Kð�1ÞN

ðnÞ
1 þN

ð�1ÞT
1 KðnÞ: ð3:12cÞ
Adding the two expressions for Kðn�1Þ in (3.12c) leads to
2Kðn�1Þ ¼ ½KðnÞN
ð�1Þ
1 þN

ð�1ÞT
1 KðnÞ� þ ½Kð�1ÞN

ðnÞ
1 þN

ðnÞT
1 Kð�1Þ�: ð3:13Þ
It tells us that if KðnÞ is symmetric so is Kðn�1Þ. Since Kð1Þ and Kð�1Þ are symmetric, KðnÞ is symmetric for all n.
Likewise, it can be shown that N

ðnÞ
2 is symmetric for all n. The matrices N1, N2, N3 do not depend on X .

From (3.8) and (3.12), the elements of KðnÞ are polynomial in X of degree no more than one for n ¼ 1; 2, no
more than two for n ¼ 3; 4, and no more than three for n ¼ 5.

Assuming that x1 ¼ 0 is not a polarization plane, let
aTR ¼ ½1; a; b�: ð3:14Þ

Eq. (3.11) can be written in full as
KðnÞ
11 þ KðnÞ

22 a�aþ KðnÞ
33 b�bþ KðnÞ

12 ðaþ �aÞ þ KðnÞ
13 ðbþ �bÞ þ KðnÞ

23 ða�bþ �abÞ ¼ 0: ð3:15Þ

Setting n ¼ 1–5, (3.15) provides five equations that can be solved for, say,
aþ �a ¼ f1; a�a ¼ f2; bþ �b ¼ f3; b�b ¼ f4; a�bþ �ab ¼ f5: ð3:16Þ

When a, �a, b, �b are computed from the first four equations and the results are inserted into the fifth

equation in (3.16), Taziev (1989) obtained the secular equation
f 2
1 f4 þ f 2

3 f2 þ f 2
5 � f1f3f5 � 4f2f4 ¼ 0 ð3:17Þ
for a general anisotropic elastic material.

It is not known if there exists a case in which x1 ¼ 0 is a polarization plane. If it exists, both a and b
computed from (3.16) would be unbounded. In this case, (3.14) is replaced by
aTR ¼ ½1=a; 1; b=a� or ½1=b; a=b; 1�: ð3:18Þ
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It is known that x2 ¼ 0 is the polarization plane for one-component surface waves (see Section 8).

Barnett (1992) has shown that x2 ¼ 0 cannot be a polarization plane for a subsonic two-component surface

waves. The question is open if x2 ¼ 0 can be a polarization plane for three-component and supersonic

surface waves.
The 3 · 3 symmetric matrices KðnÞ can be computed recursively using (3.12a)2 and (3.12c). The compu-

tation of KðnÞ becomes more complicated for the higher orders n ¼ 4 and 5. Instead of n ¼ 4 and 5 we can

replace them by n ¼ �1 and )2. The KðnÞ for monoclinic materials with the symmetry plane at x3 ¼ 0,

x1 ¼ 0 or x2 ¼ 0 are presented in Appendix A.
4. The polarization vector aR

Taziev (1989) was interested mainly in the secular equation (3.17). He was not interested in the polar-

ization vector even though the a, �a, b, �b computed from the first four equations in (3.16) provide the

polarization vector aR defined in (3.14). Let
a ¼ a1 þ ia2; b ¼ b1 þ ib2; ð4:1Þ

where a1, a2, b1, b2 are real. The polarization vector (3.14) is
aR ¼ e1 þ ie2; ð4:2Þ

e1 ¼
1

a1
b1

24 35; e2 ¼
0

a2
b2

24 35: ð4:3Þ
Eqs. (3.15) and (3.16) are rewritten as
KðnÞ
11 þ KðnÞ

22 ða21 þ a22Þ þ KðnÞ
33 ðb

2
1 þ b2

2Þ þ 2KðnÞ
12 a1 þ 2KðnÞ

13 b1 þ 2KðnÞ
23 ða1b1 þ a2b2Þ ¼ 0: ð4:4Þ

2a1 ¼ f1; a21 þ a22 ¼ f2; 2b1 ¼ f3; b2
1 þ b2

2 ¼ f4; 2ða1b1 þ a2b2Þ ¼ f5: ð4:5Þ
Eq. (4.4) remains the same if a2 and b2 change the sign. In the special case of isotropic materials, it is known

that a1 ¼ b1 ¼ b2 ¼ 0 while a2 < 0. Hence we let
a2 < 0; ð4:6Þ

so that a2 and b2 are unique. We obtain from (4.5)1;2,
a1 ¼ f1=2; a2 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 � a21

q
: ð4:7Þ
To avoid nonuniqueness, it is best to compute b1 and b2 from (4.5)3;5 as
b1 ¼ f3=2; b2 ¼ ½ðf5=2Þ � a1b1�=a2: ð4:8Þ

Substitution of (4.8) into (4.5)4 recovers the secular equation (3.17).

The displacement at the free surface shown in (3.1) is
uðx1; 0; tÞ ¼ ðe1 þ ie2Þeikðx1�ttÞ ¼ ê1 þ iê2; ð4:9Þ

where
ê1 ¼ e1 cosw� e2 sinw; ê2 ¼ e1 sinwþ e2 cosw; ð4:10Þ

and w ¼ kðx1 � ttÞ. Since ê1ðwÞ ¼ ê2ðwþ p=2Þ, it does not matter if we take the real part ê1 or the imaginary

part ê2 as the solution for the displacement at the free surface. As t increases (or w decreases), the dis-
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placement traces an ellipse in the direction from e1 to e2. A pair of diameters in an ellipse are said to be

conjugate if all chords parallel to one diameter are bisected by the other diameter. Therefore the tangent to

the ellipse at the extremity of one diameter is parallel to the other diameter. e1, e2 are a pair of conjugate

radii, so are ê1, ê2 (Gibbs, 1961; Synge, 1966; Stone, 1963; Boulanger and Hayes, 1991). When the conjugate
radii are orthogonal to each other, they are the principal radii of the ellipse. The conjugate radii ê1, ê2 are

the principal radii when
tan 2w ¼ 2e1 � e2
e2 � e2 � e1 � e1

: ð4:11Þ
It is readily shown from (4.10) that (Ting, 1996, p. 26)
ê1 � ê1 þ ê2 � ê2 ¼ e1 � e1 þ e2 � e2: ð4:12Þ
Thus the sum of the square of the lengths of the conjugate radii is independent of the choice of the con-

jugate radii, and hence is identical to the sum of the square of the principal radii.

We could also study how the polarization vector varies with respect to the depth at the free surface.

When (2.11)1 is differentiated with kx2 and the result is evaluated at the free surface x2 ¼ 0, we have
u0ðx1; 0; tÞ ¼ iAhp�iqeikðx1�ttÞ; ð4:13Þ
where the prime denotes differentiation with kx2. A linear superposition of (3.2)1 for p ¼ p1, p2, p3 is
N1AqþN2Bq ¼ Ahp�iq; ð4:14Þ
or, in view of (2.13) and (3.1)2,
Ahp�iq ¼ N1aR: ð4:15Þ
Hence (4.13) has the expression
u0ðx1; 0; tÞ ¼ a0Re
ikðx1�ttÞ; a0R ¼ iN1aR: ð4:16Þ
Let
a0R ¼ e01 þ ie02; ð4:17Þ

where e01, e

0
2 are real. Eq. (4.16)2 tells us that
e01 ¼ �N1e2; e02 ¼ N1e1: ð4:18Þ

The differentiations of the square of the length of the vectors e1 and e2 are
ðe1 � e1Þ0 ¼ 2e1 � e01; ðe2 � e2Þ0 ¼ 2e2 � e02: ð4:19Þ

Eq. (4.19) provides information on whether the conjugate radii e1 and e2 increase their lengths as x2 in-

creases.

To study if the polarization plane rotates as x2 increases, consider the vector
n ¼ ðe1 � e2Þ; ð4:20Þ

which is normal to the polarization plane. The derivative of n is
n0 ¼ ðe1 � e02 þ e01 � e2Þ: ð4:21Þ

If n0 is co-directional with n, i.e.,
e1 � n0 ¼ 0; e2 � n0 ¼ 0; ð4:22Þ
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the polarization plane does not rotate. Hence when
je1; e01; e2j ¼ 0; je2; e02; e1j ¼ 0; ð4:23Þ

the polarization plane does not rotate as x2 increases. Otherwise it rotates.
5. Orthotropic materials

When the material is orthotropic, the reduced elastic compliances s0ab vanish for a; b ¼ 4; 5; 6 except s044,
s055, s

0
66. The anti-plane and in-plane displacements are uncoupled so that only the in-plane displacement

need to be considered. The polarization vector aR is a two-vector and the matrices KðnÞ are 2 · 2 matrices.

Explicit expressions of KðnÞ for n ¼ 1; 2;�1, can be obtained by specializing the KðnÞ for monoclinic

materials shown in Appendix A. The nonzero elements are
Kð1Þ
11 ¼ �ð1� s011X Þ=s011;

Kð1Þ
22 ¼ X ;

Kð2Þ
12 ¼ ½1� ðs011 � s012ÞX �=s011;

Kð�1Þ
11 ¼ �X=ð1� s066X Þ;

Kð�1Þ
22 ¼ ð1� s011X Þ=½s022 � s0ð1; 2ÞX �:

ð5:1Þ
Eq. (4.4) for n ¼ 1; 2;�1 are
Kð1Þ
11 þ X ða21 þ a22Þ ¼ 0;

Kð2Þ
12 a1 ¼ 0;

Kð�1Þ
11 þ Kð�1Þ

22 ða21 þ a22Þ ¼ 0:

ð5:2Þ
Since Kð2Þ
12 6¼ 0, (5.2)2 tells us that a1 ¼ 0. Hence,
e1 ¼
1

0

� �
; e2 ¼

0

a2

� �
: ð5:3aÞ
Eq. (5.2)1 gives, noticing that a2 < 0 from (4.6),
a2 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� s011X Þ=ðs011X Þ

q
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðC22 � X Þ=ðC22X Þ

p
: ð5:3bÞ
The second equality in (5.3b) is obtained by using the transformation rules between s0ab and Cab (Ting,

1997). Elimination of ða21 þ a22Þ between (5.2)1;3 yields
XK ð�1Þ
11 � Kð1Þ

11 K
ð�1Þ
22 ¼ 0; ð5:4aÞ
or
ð1� s011X Þ2ð1� s066X Þ � s011½s022 � s0ð1; 2ÞX �X 2 ¼ 0: ð5:4bÞ

This is the secular equation in terms of s0ab. The secular equation in terms of Cab was derived by Sveklo

(1948) and Stoneley (1963).
The matrix N1, which is a 2 · 2 matrix here, can be obtained from (2.18), (2.19) as
N1 ¼
0 �1

s012=s
0
11 0

� �
¼ 0 �1

�C12=C22 0

� �
: ð5:5Þ
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Eqs. (4.18) and (5.3a) give
e01 ¼
a2
0

� �
; e02 ¼

0

s012=s
0
11

� �
: ð5:6Þ
The conjugate radii e1, e2 shown in (5.3a) are orthogonal to each other so that e1, e2 are the principal axes of

the ellipse. Eqs. (5.3a) and (5.6) tell us that the principal axes are fixed along the x1- and x2-axes. From
(4.19) we also have
ðe1 � e1Þ0 ¼ 2a2; ðe2 � e2Þ0 ¼ 2a2s012=s
0
11: ð5:7Þ
Since a2 < 0, the principal axis e1 decreases its length as x2 increases. As to the principal axis e2, it increases

(or decreases) its length when s012 < 0 (or s012 > 0). In the special case of isotropic materials, s012 ¼ �m=ð2lÞ
where l and m are the shear modulus and Poisson ratio, respectively. The Poisson ratio m is often assumed

positive so that the principal axis e2 increases its length, as stated in the literature. Theoreti-

cally, � < m < 1=2 is sufficient to insure the positivity of strain energy density. Thus m can be negative for
isotropic materials, and e2 can decrease its length as x2 increases.
6. Monoclinic materials with the symmetry plane at x3 = 0

When the material has a symmetry plane at x3 ¼ 0,
s014 ¼ s024 ¼ s015 ¼ s025 ¼ s046 ¼ s056 ¼ 0: ð6:1Þ
Again we need to consider only the in-plane deformation so that aR is a two-vector and KðnÞ are 2 · 2
matrices. Explicit expressions of KðnÞ for n ¼ 1; 2;�1, are shown in Appendix A. Eq. (4.4) for n ¼ 1; 2;�1

are
Kð1Þ
11 þ X ða21 þ a22Þ ¼ 0;

Kð2Þ
11 þ 2Kð2Þ

12 a1 ¼ 0;

Kð�1Þ
11 þ Kð�1Þ

22 ða21 þ a22Þ þ 2Kð�1Þ
12 a1 ¼ 0:

ð6:2Þ
Eqs. (6.2)2;1 give
2a1 ¼ �Kð2Þ
11 =K

ð2Þ
12 ; a21 þ a22 ¼ �Kð1Þ

11 =X ; ð6:3Þ
or
a1 ¼
s016ð1� s011X Þ

s011½1� ðs011 � s012ÞX � ; a2 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ð1� s011X Þ=ðs011X Þ� � a21

q
: ð6:4aÞ
The conjugate radii are
e1 ¼
1

a1

� �
; e2 ¼

0

a2

� �
: ð6:4bÞ
The principal radii are located at, from (4.11),
tan 2w ¼ 2a1a2
a22 � ð1þ a21Þ

: ð6:5Þ
The e1, e2 in (6.4) are not the principal radii unless a1 ¼ 0, i.e., s016 ¼ 0. It should be noted that e1, e2 in (6.4)

are identical to e1, e2 in (5.3) for orthotropic materials when s016 ¼ 0 but s026 need not vanish.
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When (6.3) is inserted into (6.2)3 we have
Kð2Þ
12 ½XK

ð�1Þ
11 � Kð1Þ

11 K
ð�1Þ
22 � � XKð2Þ

11 K
ð�1Þ
12 ¼ 0; ð6:6aÞ
or
½1� ðs011 � s012ÞX � ð1
n

� s011X Þ2ð1� s066X Þ � s011½s022 � s0ð1; 2ÞX �X 2
o

� s016ð1� s011X Þ½ðs016 � 2s026Þð1� s011X Þ � s012s
0
16X �X 2 ¼ 0: ð6:6bÞ
This is the most explicit secular equation obtained in Ting (2002c). Less explicit expressions were derived by

Currie (1979), Destrade (2001) and Ting (2002a). In the special case of orthotropic materials, s016 ¼ s026 ¼ 0

so that, by inspection, (6.6b) simplifies to the secular equation in (5.4b) because ½1� ðs011 � s012ÞX � 6¼ 0. In
reducing (6.6b) to (5.4b), s026 need not vanish. Thus, when s016 ¼ 0, the secular equation for monoclinic

materials with the symmetry plane at x3 ¼ 0 is identical to that for orthotropic materials. Another special

case is when s012 ¼ 0. The secular equation (6.6b) is a product of ð1� s011X Þ2 and a quadratic equation in X
(Ting, 2004). The smaller root of the quadratic equation is
X�1 ¼ 1

2
ðs011 þ s066Þ þ

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs011 � s066Þ

2 þ 4s011s
0
22 þ 4s016ðs016 � 2s026Þ

q
: ð6:7aÞ
Eq. (6.4a) simplifies to
a1 ¼ s016=s
0
11; a2 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs011X Þ�1 � ð1þ a21Þ

q
: ð6:7bÞ
Thus, when s012 ¼ 0, we have the exact expressions of X and the polarization vector aR. Other special cases
for which an exact X can be obtained are presented in Ting (2004).

The matrix N1 is
N1 ¼
a1 �1

s012=s
0
11 0

� �
: ð6:8Þ
Eqs. (4.18) and (4.19) reproduce (5.6) and (5.7) which are for orthotropic materials. Thus, as x2 increases,
e1 decreases its length while e1 increases (or decreases) its length when s012 < 0 (or s012 > 0).
7. Monoclinic materials with the symmetry plane at x1 = 0

When the material has a symmetry plane at x1 ¼ 0,
s015 ¼ s025 ¼ s016 ¼ s026 ¼ s045 ¼ s046 ¼ 0: ð7:1Þ

The symmetric matrices KðnÞ have the structure
� 0 0

0 � �
0 � �

24 35 or

0 � �
� 0 0

� 0 0

24 35: ð7:2Þ
The first of (7.2) applies to KðnÞ, n ¼ 1; 3;�1, while the second of (7.2) applies to n ¼ 2;�2. Explicit

expressions of the � elements of KðnÞ are given in Appendix A.

Eq. (4.14) for n ¼ 2;�2 simplifies to
Kð2Þ
12 a1 þ Kð2Þ

13 b1 ¼ 0;

Kð�2Þ
12 a1 þ Kð�2Þ

13 b1 ¼ 0:
ð7:3Þ
This is satisfied if a1 ¼ b1 ¼ 0. We show in Appendix B that this is indeed the case. Hence the conjugate

radii are
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e1 ¼
1

0

0

24 35; e2 ¼
0

a2
b2

24 35: ð7:4Þ
For n ¼ 1;�1; 3, (4.4) has the expression
Kð1Þ
11 þ Xa22 þ Kð1Þ

33 b
2
2 ¼ 0;

Kð�1Þ
11 þ Kð�1Þ

22 a22 þ Kð�1Þ
33 b2

2 þ Kð�1Þ
23 ð2a2b2Þ ¼ 0;

Kð3Þ
11 þ Kð3Þ

22 a
2
2 þ Kð3Þ

33 b
2
2 þ Kð3Þ

23 ð2a2b2Þ ¼ 0:

ð7:5Þ
This is rewritten as
k2a
2
2 þ k3b

2
2 þ k4ð2a2b2Þ ¼ �k1; ð7:6Þ
where
k1 ¼
Kð1Þ

11

Kð�1Þ
11

Kð3Þ
11

264
375; k2 ¼

X
Kð�1Þ

22

Kð3Þ
22

24 35; k3 ¼
Kð1Þ

33

Kð�1Þ
33

Kð3Þ
33

264
375; k4 ¼

0

Kð�1Þ
23

Kð3Þ
23

24 35: ð7:7Þ
From (7.6) we obtain
a2 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�jk1; k3; k4j
jk2; k3; k4j

s
; b2 ¼

�jk2; k3; k1j
2a2jk2; k3; k4j

; ð7:8aÞ
and
b2
2 ¼

�jk2; k1; k4j
jk2; k3; k4j

: ð7:8bÞ
Elimination of a2, b2 among the three equations in (7.8) yields
jk1; k2; k3j2 þ 4jk1; k3; k4j � jk1; k2; k4j ¼ 0: ð7:9Þ

This is a new secular equation which is different from the secular equations obtained in Ting (2002a,b).

From the relation
jki; kj; knj ¼ ðki � kjÞTkn ¼ kT
n ðki � kjÞ; ð7:10Þ
where the vector product ðki � kjÞ is a column matrix, (7.9) can be rewritten as
ðk1 � k3ÞTð4k4k
T
4 � k2k

T
3 Þðk1 � k2Þ ¼ 0: ð7:11Þ
In the special case of orthotropic materials, k4 ¼ 0 so that (7.9) reduces to
jk1; k2; k3j ¼ 0: ð7:12Þ

The element Kð3Þ

11 in Appendix A simplifies to, for orthotropic materials,
s0211K
ð3Þ
11 ¼ s012½2� ð2s011 � s012ÞX � þ s066ð1� s011X Þ2: ð7:13Þ
It can then be shown that, when (5.4b) holds, k1 and k2 are proportional to each other. Hence (7.12) holds

for orthotropic materials. It is a challenge to show that b2 ¼ 0 and a2 reduces to (5.3b) for orthotropic

materials. This is another example that shows that special cases are best treated separately.
The conjugate radii e1, e2 shown in (7.4) are orthogonal to each other so that they are the principal radii.

e1 is along the x1-axis while e2 is on the plane x1 ¼ 0. The matrix N1 computed from (2.18) is
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N1 ¼
0 �1 s6
r2 0 0

r4 0 0

24 35; ð7:14aÞ
where
r2 ¼ s012=s
0
11; r4 ¼ s014=s

0
11; s6 ¼ s056=s

0
55: ð7:14bÞ
Eqs. (4.18) and (4.19) give
e01 ¼
a2 � b2s6

0

0

24 35; e02 ¼
0

r2
r4

24 35; ð7:15Þ

ðe1 � e1Þ0 ¼ 2ða2 � b2s6Þ; ðe2 � e2Þ0 ¼ 2ða2r2 þ b2r4Þ: ð7:16Þ
In conjunction with (7.4), they tell us that the principal axis e1 remains along the x1-axis as x2 increases, and
increases (or decreases) its length if a2 � b2s6 > 0 (or <0). The principal axis e2 stays on the plane x1 ¼ 0 as

x2 increases. It increases (or decreases) its length if a2r2 þ b2r4 > 0 (or <0). Eq. (4.23)1 is satisfied while

(4.23)2 is
je2; e02; e1j ¼ j; j ¼ a2r4 � b2r2: ð7:17Þ
If j ¼ 0, the vector e2 does not rotate as x2 increases. Otherwise it rotates about the e1-axis counter-

clockwise (or clockwise) when j > 0 (or <0).
8. Monoclinic materials with the symmetry plane at x2 = 0

When the material has a symmetry plane at x2 ¼ 0,
s014 ¼ s024 ¼ s016 ¼ s026 ¼ s045 ¼ s056 ¼ 0: ð8:1Þ
The symmetric matrices KðnÞ have the structure
� 0 �
0 � 0

� 0 �

24 35 or
0 � 0
� 0 �
0 � 0

24 35: ð8:2Þ
The first of (8.2) applies to KðnÞ, n ¼ 1; 3;�1, while the second of (8.2) applies to n ¼ 2;�2. Explicit

expressions of the � elements of KðnÞ are given in Appendix A.

Eq. (4.4) for n ¼ 2;�2 simplifies to
Kð2Þ
12 a1 þ Kð2Þ

23 ða1b1 þ a2b2Þ ¼ 0;

Kð�2Þ
12 a1 þ Kð�2Þ

23 ða1b1 þ a2b2Þ ¼ 0:
ð8:3Þ
This is satisfied if a1 ¼ b2 ¼ 0. We show in Appendix B that this is indeed the case. Hence the conjugate

radii are
e1 ¼
1

0

b1

24 35; e2 ¼
0

a2
0

24 35: ð8:4Þ
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For n ¼ 1; 3;�1, (4.4) has the expression
Kð1Þ
11 þ Xa22 þ Kð1Þ

33 b
2
1 þ Kð1Þ

13 ð2b1Þ ¼ 0;

Kð�1Þ
11 þ Kð�1Þ

22 a22 þ Kð�1Þ
33 b2

1 þ Kð�1Þ
13 ð2b1Þ ¼ 0;

Kð3Þ
11 þ Kð3Þ

22 a
2
2 þ Kð3Þ

33 b
2
1 þ Kð3Þ

13 ð2b1Þ ¼ 0:

ð8:5Þ
This is rewritten as
k2a
2
2 þ k3b

2
1 þ k5ð2b1Þ ¼ �k1; ð8:6Þ
where
k1 ¼
Kð1Þ

11

Kð�1Þ
11

Kð3Þ
11

264
375; k2 ¼

X
Kð�1Þ

22

Kð3Þ
22

24 35; k3 ¼
Kð1Þ

33

Kð�1Þ
33

Kð3Þ
33

264
375; k5 ¼

Kð1Þ
13

Kð�1Þ
13

Kð3Þ
13

264
375: ð8:7Þ
From (8.6) we obtain
a2 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�jk1; k3; k5j
jk2; k3; k5j

s
; b1 ¼

�jk2; k3; k1j
2jk2; k3; k5j

; ð8:8aÞ
and
b2
1 ¼

�jk2; k1; k5j
jk2; k3; k5j

: ð8:8bÞ
Substitution of b1 from (8.8a) into (8.8b) yields
jk1; k2; k3j2 þ 4jk2; k3; k5j � jk2; k1; k5j ¼ 0: ð8:9Þ

This is a new secular equation which is different from the secular equations obtained in Ting (2002a,b). In

the special case of orthotropic materials, k5 ¼ 0 so that (8.9) reduces to (7.12) which, as stated there, holds

when (5.4b) holds. Using (7.10), (8.9) can be rewritten as
ðk2 � k3ÞTð4k5k
T
5 � k1k

T
3 Þðk2 � k1Þ ¼ 0: ð8:10Þ
The conjugate radii e1, e2 shown in (8.4) are orthogonal to each other so that they are the principal radii.

e1 is on the plane x2 ¼ 0 while e2 is along the negative x2-axis. The matrix N1 computed from (2.18) is
N1 ¼
0 �1 0

r2 0 s2
0 0 0

24 35; ð8:11aÞ
where
r2 ¼
s0ð1; 5j2; 5Þ
s0ð1; 5Þ ; s2 ¼

s0ð1; 5j1; 2Þ
s0ð1; 5Þ : ð8:11bÞ
Eqs. (4.18) and (4.19) give
e01 ¼
a2
0

0

24 35; e02 ¼
0

r2 þ b1s2
0

24 35; ð8:12Þ

ðe1 � e1Þ0 ¼ 2a2; ðe2 � e2Þ0 ¼ 2a2ðr2 þ b1s2Þ: ð8:13Þ
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In conjunction with (8.4), they tell us that the principal axis e1 stays on the plane x1 ¼ 0 as x2 increases, and
decreases its length since a2 < 0. The principal axis e2 remains along the x2-axis as x2 increases. It increases
(or decreases) its length if r2 þ b1s2 < 0 (or >0). Eq. (4.23)1 is satisfied while (4.23)2 is
je1; e01; e2j ¼ b1a
2
2: ð8:14Þ
If b1 ¼ 0, e1 does not rotate as x2 increases. Otherwise, it rotates about the e2-axis counter-clockwise (or

clockwise) when b1 > 0 (or <0).
9. Two- and one-component surface waves

The analysis presented in Sections 3 and 4 assumed that the surface wave consists of three partial waves

so that all three components of the constant vector q in (2.13) are nonzero. For a two-component surface

wave, we can set q3 ¼ 0 so that q is a two-vector. The vectors a3 and b3 are not needed. Hence the matrices

A and B consist of two columns, and are 3 · 2 matrices. With these modifications, all derivations in Sections

3 and 4 remain valid for two-component surface waves.

In the case of one-component surface waves, we may set q1 ¼ 1 and q2 ¼ q3 ¼ 0. Thus q is replaced by a
scalar of unity while A and B are replaced by single vectors a and b. The polarization vector aR is simply a.

For a one-component surface wave it is known that (Barnett and Chadwick, 1990; see also Ting, 1996,

Section 12.8)
s012 ¼ s015 ¼ s025 ¼ 0; s011 ¼ s055 ¼ X�1: ð9:1Þ
It can then be shown that KðnÞ vanishes for n ¼ 2; 4;�2. For n ¼ 1; 3; 5;�1, KðnÞ
22 is the only nonzero element

of KðnÞ. In fact
Kð1Þ
22 ¼ 1=s011; Kð3Þ

22 ¼ s022=s
02
11; Kð5Þ

22 ¼ s0222=s
03
11: ð9:2Þ
Thus (4.4) is trivially satisfied for n ¼ 2; 4;�2, and
KðnÞ
22 ða21 þ a22Þ ¼ 0; ð9:3Þ
for n ¼ 1; 3; 5;�1. In view of (9.2), (9.3) gives a1 ¼ a2 ¼ 0. Thus the polarization vector is on the plane
x2 ¼ 0, confirming what is known in the literature. Unfortunately, the present analysis do not determine b1

and b2.
10. Concluding remarks

The secular equation due to Taziev (1989) for a general anisotropic elastic material is derived using a
different derivation. In the process, an explicit expression of the polarization vector is obtained. The same

derivation is employed to obtain the secular equations and the polarization vectors e1 þ ie2 for orthotropic

and monoclinic materials with the symmetry plane at x3 ¼ 0, x1 ¼ 0 or x2 ¼ 0. The displacement at the free

surface traces an elliptic path for which e1, e2 are a pair of conjugate radii of the ellipse. New secular

equations are obtained for monoclinic materials with the symmetry plane at x1 ¼ 0 or x2 ¼ 0. The vectors

e1, e2 are explicit in terms of the elastic compliances and X ¼ qt2 where q and t are the mass density and

surface wave speed, respectively. They will be useful as test examples for a numerical solution of surface

waves. For monoclinic materials with the symmetry plane at x1 ¼ 0 (or x2 ¼ 0), the polarization plane
contains the x1-axis (or the x2-axis) which is a principal axis of the ellipse. We also study if e1, e2 and the

polarization plane change as we moves away from the free surface.
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Appendix A. The matrix K(n) for monoclinic materials

The elements of the 3 · 3 symmetric matrices KðnÞ can be computed using the recursive formula (3.12).

Kð1Þ and Kð�1Þ are obtained from (3.8) and (3.9) in which the quantities needed in the equations can be found
in (2.7b), (2.18) and (2.19). The expressions in terms of s0ab and its minors can be converted to Cab and its

minors, and vice versa (Ting, 1997). Listed below are KðnÞ for monoclinic materials with the symmetry plane

at x3 ¼ 0, x1 ¼ 0, and x2 ¼ 0. As pointed out below, explicit expressions of some of the elements of KðnÞ are

not needed in the paper.
A.1. Symmetry plane at x3 ¼ 0

The s0ab shown in (6.1) vanish for this case. Since the in-plane and the anti-plane deformations are
uncoupled, it suffices to consider the in-plane deformation. The KðnÞ are reduced to 2· 2 matrices so that

only KðnÞ
11 , K

ðnÞ
22 and KðnÞ

12 are shown below.
Kð1Þ
11 ¼ X � ð1=s011Þ; Kð1Þ

22 ¼ X ; Kð1Þ
12 ¼ 0;

Kð2Þ
11 ¼ �2s016ð1� s011X Þ=s0211; Kð2Þ

22 ¼ 0;

Kð2Þ
12 ½1� ðs011 � s012ÞX �=s011;

Kð�1Þ
11 ¼ �½Cð1; 6Þ � C66X �X=D3 ¼ �½s022 � s0ð1; 2ÞX �X=D0

3;

Kð�1Þ
22 ¼ fCð1; 2; 6Þ � ½Cð1; 2Þ þ Cð2; 6Þ�X þ C22X 2g=D3

¼ ½ð1� s011X Þð1� s066X Þ � ðs016X Þ2�=D0
3;

Kð�1Þ
12 ¼ �½Cð1; 2j1; 6Þ � C26X �X=D3 ¼ ½s026 � s0ð1; 2j1; 6ÞX �X=D0

3;
where
D3 ¼ ðC11 � X ÞðC66 � X Þ � C2
16;

D0
3 ¼ s022 � ½s0ð2; 6Þ þ s0ð1; 2Þ�X þ s0ð1; 2; 6ÞX 2

¼ ½s022 � s0ð1; 2ÞX �ð1� s066X Þ þ s016s
0ð1; 2j2; 6ÞX 2 þ s026½s026 � s0ð1; 2j1; 6ÞX �X :
It should be noted that D3 or D0
3 is a common factor for Kð�1Þ

ij so that it can be deleted in using (6.2)3 and

(6.6a).

A.2. Symmetry plane at x1 ¼ 0

The s0ab shown in (7.1) vanish for this case. The matrices KðnÞ have the structure (7.2)1 for n ¼ 1; 3;�1 and
the structure (7.2)2 for n ¼ 2;�2. Listed below are the � elements of KðnÞ shown in (7.2).
Kð1Þ
11 ¼ X � ð1=s011Þ; Kð1Þ

22 ¼ X ;

Kð1Þ
33 ¼ X � ð1=s055Þ; Kð1Þ

23 ¼ 0;

s011K
ð2Þ
12 ¼ 1� ðs011 � s012ÞX ;

s011s
0
55K

ð2Þ
13 ¼ �s014ð1� s055X Þ � s056ð1� s011X Þ;
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s055s
02
11K

ð3Þ
11 ¼ s055s

02
12X � s0214ð1� s055X Þ
� ½2ðs014s056 � s012s

0
55Þ � s0ð5; 6Þð1� s011X Þ�ð1� s011X Þ;

s011K
ð3Þ
22 ¼ �1þ ðs011 � 2s012ÞX þ s0ð1; 2ÞX 2;

s011s
02
55K

ð3Þ
33 ¼ �s0256ð1� s011X Þ � ½2s014s056 � s0ð1; 4Þð1� s055X Þ�ð1� s055X Þ;

s011s
0
55K

ð3Þ
23 ¼ s056½1� ðs011 � s012ÞX � þ ½s014 � s0ð1; 2j1; 4ÞX Þ�ð1� s055X Þ;

Kð�1Þ
11 ¼ �½Cð5; 6Þ � C66X �X=D1 ¼ �ð1� s055X ÞX=D0

1;

Kð�1Þ
22 ¼ ½Cð1; 2Þ � C22X �=ðC11 � X Þ ¼ ½s044 � s0ð1; 4ÞX �=bD1;

Kð�1Þ
33 ¼ ½Cð1; 4Þ � C44X �=ðC11 � X Þ ¼ ½s022 � s0ð1; 2ÞX �=bD1;

Kð�1Þ
23 ¼ ½Cð1; 2j1; 4Þ � C24X �=ðC11 � X Þ ¼ �½s024 � s0ð1; 2j1; 4ÞX �=bD1;
where
D1 ¼ ðC55 � X ÞðC66 � X Þ � C2
56;

D0
1 ¼ ð1� s055X Þð1� s066X Þ � ðs056X Þ2;bD1 ¼ s0ð2; 4Þ � s0ð1; 2; 4ÞX :
It should be noted that explicit expressions of Kð2Þ and Kð�2Þ are not needed in (7.3) because a1 and b1 in

(7.3) vanish. However, we need Kð2Þ to compute Kð3Þ.

A.3. Symmetry plane at x2 ¼ 0

The s0ab shown in (8.1) vanish for this case. The matrices KðnÞ have the structure (8.2)1 for n ¼ 1; 3;�1 and

the structure (8.2)2 for n ¼ 2;�2. Listed below are the � elements of KðnÞ shown in (8.2).
Kð1Þ
11 ¼ X � ½s055=s0ð1; 5Þ�; Kð1Þ

22 ¼ X ;

Kð1Þ
33 ¼ X � ½s011=s0ð1; 5Þ�; Kð1Þ

13 ¼ s015=s
0ð1; 5Þ;

s0ð1; 5ÞKð2Þ
12 ¼ s055 þ ½s0ð1; 5j2; 5Þ � s0ð1; 5Þ�X ;

s0ð1; 5ÞKð2Þ
23 ¼ �s015 þ s0ð1; 2j1; 5ÞX ;

½s0ð1; 5Þ�2Kð3Þ
11 ¼ s044s

02
15 þ ½s0ð1; 5j2; 5Þ�2X

þ f2s0ð1; 5j2; 5Þ � 2s015s
0
46 þ s066½s055 � s0ð1; 5ÞX �g½s055 � s0ð1; 5ÞX �;

s0ð1; 5ÞKð3Þ
22 ¼ �s055 þ ½s0ð1; 5Þ � 2s0ð1; 5j2; 5Þ�X þ s0ð1; 2; 5ÞX 2;

½s0ð1; 5Þ�2Kð3Þ
33 ¼ s066s

02
15 � s0ð1; 2j1; 5Þ½2s015 � s0ð1; 2j1; 5ÞX �

� f2s015s046 � s044½s011 � s0ð1; 5ÞX �g½s011 � s0ð1; 5ÞX �;

½s0ð1; 5Þ�2Kð3Þ
13 ¼ �s0ð1; 5j2; 5Þ½s015 � s0ð1; 2j1; 5ÞX �

þ s015fs015s046 � s044½s011 � s0ð1; 5ÞX �g
þ fs0ð1; 2j1; 5Þ � s015s

0
66 þ s046½s011 � s0ð1; 5ÞX �g½s055 � s0ð1; 5ÞX �;
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Kð�1Þ
11 ¼ �C66X=ðC66 � X Þ ¼ �s044X=bD2;

Kð�1Þ
22 ¼ fCð1; 2; 5Þ � ½Cð1; 2Þ þ Cð2; 5Þ�X þ C22X 2g=D2

¼ ½ð1� s011X Þð1� s055X Þ � ðs015X Þ2�=D0
2;

Kð�1Þ
33 ¼ ½Cð4; 6Þ � C44X �=ðC66 � X Þ ¼ ð1� s066X Þ=bD2;

Kð�1Þ
13 ¼ �C46X=ðC66 � X Þ ¼ s046X=bD2;
where
D2 ¼ ðC11 � X ÞðC55 � X Þ � C2
15;

D0
2 ¼ s022 � ½s0ð1; 2Þ þ s0ð2; 5Þ�X þ s0ð1; 2; 5ÞX 2;bD2 ¼ s044 � s0ð4; 6ÞX :
Again, explicit expressions of Kð2Þ and Kð�2Þ are not needed in (8.3) because a1 and b2 in (8.3) vanish.

However, we need Kð2Þ to compute Kð3Þ.

Appendix B. Polarization planes for monoclinic materials

We will show that the polarization plane for monoclinic materials with the symmetry plane at x1 ¼ 0 (or

x2 ¼ 0) contains the x1-axis (or the x2-axis) as shown in (7.4) (or (8.4)).

For monoclinic materials with the symmetry plane at x1 ¼ 0, the eigenrelation (2.4) and the vector b in
(2.8)1 have the expression
Ca ¼
C11 þ p2C66 pðC12 þ C66Þ pðC14 þ C56Þ
pðC12 þ C66Þ C66 þ p2C22 C56 þ p2C24

pðC14 þ C56Þ C56 þ p2C24 C55 þ p2C44

24 35a ¼ 0; ðB:1Þ

b ¼
pC66 C66 C56

C12 pC22 pC24

C14 pC24 pC44

24 35a: ðB:2Þ
The sextic equation jCj ¼ 0 is a cubic equation in p2. If p21, p
2
2, p

2
3 are all real, we have

Case I
p1 ¼ ic1; p2 ¼ ic2; p3 ¼ ic3: ðB:3Þ

If p21, p

2
2 are complex conjugates and p23 is real, we have

Case II
p1 ¼ c1 þ ic2; p2 ¼ �c1 þ ic2; p3 ¼ ic3: ðB:4Þ

In (B.3) and (B.4), c1, c2, c3 are real and positive.

Consider Case I first. The eigenvectors ak ðk ¼ 1; 2; 3Þ of (B.1) assume the structure
aTk ¼ ½R; I ; I �; ðB:5Þ

where R and I stand for real and pure imaginary, respectively. The vectors bk computed from (B.2) have the

structure
bTk ¼ ½I ; R; R�: ðB:6Þ
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The vanishing of the surface traction Bq ¼ 0 in (2.13) is satisfied by taking
qT ¼ ½R; R; R�: ðB:7Þ
The polarization vector aR ¼ Aq then gives
aTR ¼ ½R; I ; I �: ðB:8Þ
This proves (7.4).

For Case II for which the eigenvalues p are given by (B.4),
p2 ¼ ��p1 and p3 ¼ ic3: ðB:9Þ
Let the eigenvector a1 associated with p1 be given by
aT1 ¼ ½n1; n2; n3�: ðB:10aÞ
It can be shown from (B.1) that
aT2 ¼ ½��n1; �n2; �n3�; ðB:10bÞ

aT3 ¼ ½R; I ; I �: ðB:10cÞ

Likewise, if the vector b1 computed from (B.2) is
bT1 ¼ ½g1; g2; g3�; ðB:11aÞ

we have
bT2 ¼ ½�g1; ��g2; ��g3�; ðB:11bÞ

bT3 ¼ ½I ; R; R�: ðB:11cÞ

The vanishing of the surface traction Bq ¼ 0 in (2.13) is satisfied by taking
qT ¼ ½k; ��k; R�: ðB:12Þ

The polarization vector aR ¼ Aq then gives
aTR ¼
n1 ��n1 R
n2 �n2 I
n3 �n3 I

24 35 k
��k
R

24 35 ¼
kn1 þ �k�n1 þ R
kn2 � �k�n2 þ I
kn3 � �k�n3 þ I

24 35; ðB:13Þ
which leads to (B.8). This completes the proof.

For monoclinic materials with the symmetry plane at x2 ¼ 0, (B.1) and (B.2) are replaced by
Ca ¼
C11 þ p2C66 pðC12 þ C66Þ C15 þ p2C46

pðC12 þ C66Þ C66 þ p2C22 pðC46 þ C25Þ
C15 þ p2C46 pðC46 þ C25Þ C55 þ p2C44

24 35a ¼ 0; ðB:14Þ

b ¼
pC66 C66 pC46

C12 pC22 C25

pC46 C46 pC44

24 35a: ðB:15Þ
Again, jCj ¼ 0 is a cubic equation in p2 so that either (B.3) or (B.4) applies. For Case I, we have
aTk ¼ ½R; I ; R� ðk ¼ 1; 2; 3Þ: ðB:16Þ
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The vectors bk computed from (B.15) have the structure
bTk ¼ ½I ; R; I �: ðB:17Þ
The vanishing of the surface traction Bq ¼ 0 is satisfied by taking
qT ¼ ½R; R; R�: ðB:18Þ
The polarization vector aR ¼ Aq then gives
aTR ¼ ½R; I ; R�: ðB:19Þ
This proves (8.4).

For Case II for which the eigenvalues p are given by (B.4) or (B.9), it can be shown that the polarization

vector also has the structure (B.19). The proof is similar to the one for monoclinic materials with the

symmetry plane at x1 ¼ 0.
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